Телефон
8 (495) 103-67-33
обратный звонок
Режим работы
с 10:00 до 19:00
sales@west-tech.ru
Ваша корзина
В корзине пока пусто
Главная страница / Полезные статьи / Статья "Громкоговорители, часть 5.1"

Статья "Громкоговорители, часть 5.1"

Корпуса акустических систем. Конструкции.

В предыдущих статьях были рассмотрены конструкции различных видов излучателей, которые являются основными элементами всех видов акустических систем. Однако неотъемлемой частью любой акустической системы является также корпус.

Корпус (рис. 1) выполняет многообразные функции. В области низких частот он блокирует эффект "короткого замыкания", возникающий за счет сложения излучаемого звука от передней и тыловой поверхностей диафрагмы в противофазе, что приводит к подавлению низкочастотного излучения. Применение корпуса позволяет увеличить интенсивность излучения на низких частотах.

Кроме того, он увеличивает механическое демпфирование громкоговорителей, что позволяет "сгладить" резонансы и уменьшить неравномерность амплитудно-частотной характеристики. Корпус оказывает существенное влияние не только в области низких, но и в области средних и высоких частот за счет дифракционных эффектов и за счет колебаний стенок корпуса, что, естественно, вносит существенный вклад в увеличение линейных и нелинейных искажений и в качество звучания акустических систем. Именно поэтому вопросам проектирования корпусов акустических систем (выбору конфигурации, материала стенок, вибродемпфирующих и виброизоляционных покрытий и т. д.) все фирмы-производители уделяют большое внимание.

Наиболее распространенными типами низкочастотного оформления в конструкциях современных корпусов акустических систем являются: бесконечный экран (infinitive baffle), закрытый корпус (closed box, acoustical suspensions, sealed box), корпус с фазоинвертором (vented-box, ported-box, bass-reflection и др.), лабиринт (labyrinth), трансмиссионная линия (transmission-line), корпус с симметричной нагрузкой (bandpass enclosure), с пассивным радиатором (passive radiator, drone cone) и др.

Остановимся на конструкции наиболее известных из них.

Бесконечный экран
Этот тип оформления должен удовлетворять двум условиям: представлять бесконечно большую поверхность, в которой установлен громкоговоритель, и иметь большой объем воздуха позади нее. Максимальным приближением к такому оформлению является установка громкоговорителя в стене комнаты с достаточно большим объемом за ним. Только при выполнении обоих условий обеспечивается полное предотвращение эффекта короткого замыкания и эффекта демпфирования колебаний со стороны воздушного объема.

Частотная характеристика громкоговорителя в таком "истинно бесконечном экране" зависит от значения его резонансной частоты и спадает со скоростью 12 дБ/окт. Следует, правда, отметить, что отсутствие демпфирования при установке громкоговорителя в такой вид оформления приводит к эффекту "бубнения" на низких частотах (особенно слышимому у громкоговорителей больших размеров).

Использование плоских экранов конечных размеров или "свернутых" экранов (то есть экранов с согнутыми краями — открытых корпусов) в качестве низкочастотных оформлений было довольно широко распространено в начальный период развития производства выносных акустических систем в 30-50 годы. Однако это приводило к созданию акустических систем с очень большим объемом корпуса (600-800 куб. м), поскольку минимальный размер, при котором не будет короткого замыкания, определяется соотношением: 2L = l/2, где L — расстояние от центра до края экрана, l — длина волны. Например, для частоты 100 Гц, где длина волны l = 3,4 м, величина L составляет 0,85 м.

Если экран свернуть, то есть перейти к открытому оформлению, то его размер можно уменьшить только процентов на тридцать. В противном случае получаются слишком длинные боковые стенки (типа трубы), в которых возникают резонансные явления, и явление дифракции на открытых краях, окрашивающее звук. Поэтому в выносных акустических системах такие типы оформлений практически не используются, хотя встроенные в стены АС применяются достаточно часто, особенно в аппаратных студий звукозаписи (они называются "in-wall", "in-ceiling infinitive baffle", "wall-mount panel" и т. д.).

Термин "infinitive baffle" употребляется иногда также для оформлений типа "закрытый ящик" достаточно больших размеров, в которых не происходит сдвига резонансной частоты громкоговорителя по сравнению с излучением в свободное пространство (при этом отношение гибкости подвеса к гибкости воздуха должно быть меньше, чем 3).

Закрытый корпус
В период значительного увеличения объемов массового производства выносных акустических систем, то есть примерно в пятидесятые годы, начали активно применяться закрытые корпуса "компрессионного" типа, что позволило значительно уменьшить размеры АС, сделать их удобными для применения в жилых комнатах и при этом сохранить воспроизведение низкочастотной части диапазона (рис. 2).

Принцип работы компрессионного оформления состоит в том, что в нем используются громкоговорители с очень гибким подвесом и большой массой, то есть низкой резонансной частотой. В этом случае упругость воздуха в корпусе становится определяющим фактором. Именно она начинает вносить основной вклад в восстанавливающую силу, приложенную к диафрагме (при этом отношение гибкости подвеса к гибкости воздуха должно быть не меньше, чем 3...4). Поскольку воздух — среда линейная (при относительно малых уровнях звукового давления), то это позволяет, кроме возможности уменьшить объем корпуса, уменьшить также нелинейные искажения.

Низкочастотные громкоговорители для таких систем должны проектироваться особым образом (иметь большую гибкость подвеса, большую массу диафрагмы, особую конструкцию звуковой катушки и магнитной цепи для обеспечения больших смещений и т. д.). Теория проектирования закрытых корпусов была изложена в работах Small-Thiele, в настоящее время их проектирование производится с помощью компьютерных программ.

При правильно подобранных электромеханических параметрах громкоговорителей и корпуса в акустических системах такого типа можно получить максимально гладкую форму АЧХ (рис. 3) на низких частотах, обеспечить чистое, сухое звучание басов. Именно поэтому многие ведущие фирмы (например, KEF, Tannoy и др.) при создании акустических систем категории Hi-Fi и контрольных агрегатов применяют корпуса закрытого типа.

Корпус с фазоинвертором
Это корпус, в котором сделано отверстие, что позволяет использовать излучение тыльной поверхности диффузора (рис. 4). Максимальный эффект достигается в области частоты резонанса колебательной системы, образуемой массой воздуха в отверстии или трубе и гибкостью воздуха в корпусе.

Наличие небольшого отверстия не нарушает компрессионного принципа работы громкоговорителя в корпусе, но дает возможность значительно увеличить уровень звукового давления на частоте резонанса (сравнительная форма АЧХ в области низких частот показана на рис. 3), уменьшить уровень нелинейных искажений, значительно расширить возможности настройки параметров акустической системы. Следует отметить, что наличие фазоинвертора требует значительно большего искусства при проектировании, так как неточная настройка приводит к появлению переходных искажений ("затянутых басов").

В современных моделях используются несколько разновидностей фазоинверсных систем.

1. Корпус со специальной трубой, нагруженной на отверстие (ducted port enclosures) — это позволяет уменьшить размеры корпуса и с помощью изменения размеров трубы улучшить настройку фазоинвертора (рис. 4а).

2. Корпус с пассивным излучателем (passive radiator, рис. 5); в отверстие корпуса устанавливается пассивный (то есть без магнитной цепи) громкоговоритель, колебания которого возбуждаются за счет колебаний объема воздуха, заключенного в корпус. Регулируя массу и гибкость такого громкоговорителя, можно получать такой же эффект, как и при настройке фазоинвертора.

3. Лабиринт (labyrinth, рис. 6) представляет собой вариант низкочастотного корпуса с фазоинвертором, в котором устанавливаются специальные перегородки, создающие своего рода лабиринт для потока воздуха. Когда длина лабиринта достигает 1/4 длины волны на частоте резонанса низкочастотного громкоговорителя, он действует аналогично соответствующим образом настроенному фазоинвертору. Применение лабиринта расширяет возможности для настройки на более низкие частоты. Лабиринт обычно имеет серию резонансных пиков на гармониках, соответствующих основной резонансной частоте трубы. Они демпфируются размещением специальных звукопоглощающих материалов на стенках корпуса.

4. Трансмиссионная линия (transmission line) является вариантом лабиринта. В современных конструкциях акустических систем используются ее многочисленные разновидности: четвертьволновая (quarter wave), первого порядка (first order), с переменным сечением (tapered), трапецеидальная (trapezoidal) и т. д.

Трансмиссионная линия отличается от лабиринта тем, что звукопоглощающим материалом забивается весь объем корпуса, и поперечное сечение линии делается переменным — больше у конуса, меньше у отверстия. Звукопоглощающий материал подбирается таким образом, чтобы обеспечить демпфирование высокочастотных резонансов. Корпуса такого типа очень сложны для настройки, поэтому существуют их упрощенные варианты (типа "tapered pipe"), в которых используется просто труба переменного сечения с обратным соотношением площадей: больше у диффузора, меньше у отверстия с заполнением объемным поглотителем.

5. Фазоинверсное оформление с двойной камерой (double-chamber, рис. 7) или с несколькими камерами (multichamber port). Применение двойных или нескольких камер позволяет обеспечить согласование нагрузки с низкочастотным громкоговорителем в значительно более широком диапазоне частот. На амплитудно-частотной характеристике такой системы отчетливо видны два резонансных пика: один соответствует настройке низкочастотного громкоговорителя на полный объем двух камер, другой — на одну камеру; если эти камеры равных объемов, то эти частоты разделены ровно на октаву.

Обычно двойная камера имеет одно отделение в два раза больше другого. Оформления с двойными камерами обеспечивают большее демпфирование колебаний громкоговорителей, что дает значительные преимущества при использовании их в мощных акустических системах, например, для дискотек, музыкальных ансамблей и др., так как снижает вероятность перегрузки и выхода из строя низкочастотных громкоговорителей.

6. Оформления типа полосовых фильтров (bandpass systems, рис. 8) — это также разновидность фазоинверсных систем, в которых громкоговоритель установлен внутри закрытого корпуса и излучает не прямо в окружающую среду, а через корпус с фазоинверсным отверстием. Применение таких систем позволяет регулировать спад АЧХ не только в сторону низких частот, но и в сторону высоких частот (то есть действует подобно полосовому фильтру). Подбирая размеры и тип камеры (закрытый, с фазоинвертором, "двойным фазоинвертором" и др.), можно менять крутизну спада АЧХ, поэтому по аналогии с фильтрами их называют "полосовыми" оформлениями. Например, полосовое оформление четвертого порядка содержит переднюю камеру с фазоинвертором, заднюю — закрытую, скорость спада при этом в сторону высоких частот 24 дБ/окт, то есть соответствует фильтру четвертого порядка; полосовое оформление шестого порядка имеет обе камеры с фазоинвертором, при этом спад — 36 дБ/окт.

Если в корпусе установлены два одинаковых громкоговорителя на один фазоинвертор, то это называется "низкочастотное оформление с симметричной нагрузкой" (если громкоговорители включены в противофазе, то такое соединение называется "push-pull"). Такого типа оформления часто используются в настоящее время в низкочастотных блоках (субвуферах), которые широко применяются в аппаратуре для домашнего кинотеатра и др.

В этих же блоках используются двойные оформления (типа Isobarik), когда два низкочастотных громкоговорителя нагружены на закрытую дополнительную камеру. Один работает на внутренний объем (закрытый или с фазоинвертором), другой излучает во внешнюю среду — это позволяет снизить частоту среза, уменьшить уровень гармоник, особенно четных, и уменьшить общий объем системы (рис. 9).

7. Рупорное оформление (horn) используется как "акустический трансформатор", обеспечивающий улучшение условий согласования (то есть повышающий акустическое сопротивление) громкоговорителя со средой. Это позволяет существенно (в три и более раза) увеличить КПД акустической системы и улучшить характеристики направленности. Однако для низких частот размеры рупора получаются слишком большими, поэтому в некоторых мощных акустических системах используются свернутые рупоры (folded horn, рис. 10), иногда со специальными компрессионными камерами, что позволяет получать большие уровни звукового давления на низких частотах.

Кроме перечисленных, наиболее распространенных видов оформлений, в каталогах, журналах, рекламах упоминаются и другие.

Теория расчета основных видов низкочастотных оформлений глубоко проработана и практически полностью переведена на компьютерные методы. Приближенные методы расчета будут приведены в следующей статье.

Вопрос о достоинствах и недостатках каждого вида оформлений довольно сложен, конкретный выбор зависит от назначения и спецификации данной акустической системы.

Влияние формы корпуса на АЧХ
В области средних и высоких частот существенное влияние на форму амплитудно-частотной характеристики и качество звучания акустических систем оказывает внешняя конфигурация корпуса (то есть его форма, наличие отражающих выступов и впадин, характер округления углов ширина и степень демпфирования его передней стенки и пр.), что обусловлено влиянием дифракционных эффектов. В последние годы, когда параметры высококачественных акустических систем существенно улучшились, вклад дифракционных эффектов в общий уровень искажений стал более заметен, поэтому анализу их влияния на выходные характеристики акустических систем посвящены многочисленные исследования.

Результаты расчетов и эксперименты показали, что использование корпусов со сглаженными углами, обтекаемой формы (в виде сфер, эллипсоидов, цилиндров и др.), с несимметричным расположением громкоговорителей значительно уменьшает неравномерность АЧХ и снижает фазовые искажения (рис. 11).

Однако в связи с тем, что технология изготовления таких корпусов значительно сложнее и дороже, подавляющее большинство акустических систем выпускается в корпусах прямоугольной формы. При этом применяются специальные меры для уменьшения дифракционных эффектов на углах передней панели: специальное заглушение панели, оптимизация соотношения размеров передней панели и глубины корпуса, подбор несимметричного расположения громкоговорителей и др.

Стремление сдвинуть дифракционные пики-провалы на АЧХ в более высокочастотную область и тем самым снизить их влияние, заставляет использовать максимально узкие передние панели (насколько позволяют размеры низкочастотного громкоговорителя). Современная техника цифровых измерений дает возможность количественно оценить вклад дифракционных эффектов в общий уровень неравномерности АЧХ (он может достигать 4 дБ) и рассчитать искажения ГВЗ (до 0,5 мс). Полученные значения оказались достаточно высоки, что заметно сказывается на качестве звучания, поэтому сложные внешние конфигурации многих современных акустических систем обусловлены не только эстетическими соображениями, но и стремлением улучшить их параметры и качество звучания.

Влияние вибрации корпуса на АЧХ
Корпус акустической системы в области средних и высоких частот вносит также значительные искажения в воспроизводимый сигнал из-за колебаний стенок корпуса и заключенного в них объема воздуха. Это приводит к изменению формы АЧХ: снижению уровня звукового давления на низких частотах и увеличению неравномерности на средних; возрастанию нелинейных искажений и увеличению переходных процессов, что ухудшает качество звучания акустических систем, внося так называемые "ящичные" (boxes) призвуки.

Анализ механизмов возникновения звукоизлучения из-за вибраций стенок корпуса показывает, что существуют два пути передачи колебаний от громкоговорителя к стенкам корпуса:
- возбуждение колебаний внутреннего объема воздуха в корпусе от тыльной поверхности диафрагмы и передача через него колебаний на стенки корпуса;
- прямая передача вибраций от диффузородержателя на переднюю стенку, а от нее на боковые и на заднюю.

В области частот примерно до 600 Гц существенный вклад вносят оба механизма передачи, на более высоких частотах в основном играет роль второй механизм. Для уменьшения влияния этих явлений используют различные конструктивные меры, а также различные способы звуко- и виброизоляции и поглощения.

Для уменьшения передачи колебаний за счет внутреннего объема корпуса и демпфирования его внутренних резонансов применяют различные методы звукопоглощения: обычно корпус полностью или частично заполняется тонковолокнистыми упругопористыми материалами (синтетические волокна, минеральная вата и др.).

Для увеличения коэффициента поглощения в области низких частот необходимо увеличивать толщину и плотность заполнения. Однако чрезмерное заполнение корпуса звукопоглощающим материалом может привести к снижению уровня звукового давления на низких частотах и к излишней "сухости" басов. Рекомендуемая плотность заполнения составляет 8-11 кг на куб. м. За последние годы создано новое поколение звукопоглощающих материалов, обеспечивающих эффективное демпфирование резонансных колебаний внутреннего объема в заданной области частот. В некоторых моделях используются перфорированные и сотовые панели поглотителей внутри корпуса. Внесение поглотителя значительно снижает неравномерность АЧХ.

Для уменьшения колебаний стенок корпуса необходимо применение мер, направленных на увеличение его звукоизолирующей способности. Звукоизолирующая способность корпуса акустической системы состоит в следующем: часть звуковой энергии, излучаемой внутрь корпуса диафрагмой громкоговорителя, поглощается в слоях звукопоглощающего материала, часть попадает на стенки корпуса.

В стенках происходят следующие процессы: некоторая доля энергии возвращается обратно внутрь корпуса, другая рассеивается в материале стенок из-за потерь на трение и остаточную деформацию, третья проходит в окружающую среду за счет упругих продольных и поперечных колебаний стенок и через щели и поры в материале. Задача выбора конструкций стенок корпуса состоит в том, чтобы максимально увеличить коэффициент звукоизоляции, то есть уменьшить долю прошедшей энергии по отношению к падающей.

Коэффициент звукоизоляции существенно зависит от жесткости и массы стенок. Поэтому для уменьшения общего уровня звукоизлучения от стенок (то есть для повышения их звукоизоляции) применяются различные меры для повышения их жесткости и массы.

1. Использование для стенок тяжелых и жестких материалов: кирпича, мрамора, пенобетона и др. Эффект звукоизоляции получается очень хороший (до 30 дБ и более), соответственно улучшается качество звучания акустических систем. Но такие корпуса оказываются слишком тяжелыми и дорогими для широкого применения, что затрудняет их изготовление и эксплуатацию. Поэтому в качестве материалов для корпусов обычно используются: многослойная фанера, древесностружечная плита (ДСП), древесноволокнистая плита (ДВП) и др. (толщина фанеры для боковых стенок выбирается в пределах 18...20 мм, для лицевых — 20...40 мм).

2. Применение многослойных материалов из слоев различной жесткости и плотности, что позволяет существенно уменьшить колебания стенок.

3. Использование специальных вибропоглощающих покрытий стенок корпуса. В зависимости от диапазона резонансных частот стенок выбираются "жесткие", "мягкие" или армированные покрытия.

4. Применение конструктивных мер: ребер жесткости, стяжек, распорок между стенками, разделение корпуса на отдельные отсеки и т. д.

Анализ второго способа возбуждения колебаний стенок корпуса показывает, что при колебаниях подвижной системы громкоговорителя возбуждаются колебания диффузородержателя, которые передаются на переднюю панель. Затем возникают интенсивные продольные колебания боковых стенок, которые передают вибрации на заднюю и верхние панели.

В области низких частот стенки корпуса колеблются синфазно. В этой области уровень виброускорения на стенках (а, следовательно, и уровень звукоизлучения от них) определяется их общей упругостью и упругостью заключенного в них объема воздуха. По мере повышения частоты начинаются интенсивные изгибные колебания всех стенок корпуса, амплитуды которых имеют максимальные значения на резонансных частотах. Измерения виброускорения на стенках корпусов показывают, что наибольшие амплитуды вибраций имеют место на передней и задней стенках, затем на верхней и боковых. Общая картина распределений на стенках корпуса показана на рис. 12.

Для борьбы с прямой передачей вибраций применяют методы виброизоляции и вибропоглощения. Эффект виброизоляции обеспечивается применением упругих амортизаторов при креплении громкоговорителя к корпусу, а иногда и передней стенки корпуса к боковым. При конструировании высококачественных акустических систем применяют сплошные резиновые прокладки между диффузородержателем и передней панелью, локальные опорные виброизоляторы для крепления винтов, амортизирующие прокладки для крепления передней панели к боковым, развязку диффузородержателя от передней панели за счет дополнительной опоры его на дно и т. д. Все эти меры позволяют уменьшить передаваемый уровень вибрации на боковые и задние стенки корпуса на 10...11 дБ.

В современных высококачественных акустических системах корпус представляет собой чрезвычайно сложную и дорогостоящую конструкцию (рис. 13). В качестве критерия эффективности принятых мер по звукоизоляции корпуса принято считать разницу между уровнем звукового давления, излучаемого стенками корпуса, и уровнем звукового давления от акустической системы в целом, она должна составлять не менее 20 дБ.

Кроме объективных измерений при проектировании проводится прослушивание акустических систем в корпусах различной конструкции, результаты которых подтверждают большое влияние корпуса на объективные и субъективные характеристики акустических систем.

Другие интересные статьи
Статья "Громкоговорители, часть 3.2"

Конструкция электродинамических громкоговорителей. Причины возникновения нелинейных искажений.Физические процессы, приводящие к возникновению нелинейных искажений в электродинамических громкоговорителях, связаны, прежде всего, с нелинейной зависимостью выходного сигнала (звукового давления) от входного сигнала (приложенного напряжения к звуковой катушке…

Профессиональный звук

Устройства динамической обработки сигналов. В настоящее время существует огромное множество различных процессоров для динамической обработки звуковых сигналов - это различного рода компрессоры, гейты, экспандеры, левеллеры, лимитеры, и т.д. и т.п. В этом многообразии нетрудно и запутаться - какой прибор необходим в конкретной ситуации? Чем отличаются приборы, имеющие…

Сэмплинг

Сэмплинг? Как это ни смешно звучит, история сэмплинга началась с собачьего лая. Да, да, именно с него. Ограниченность музыкальных модулей и аналоговых синтезаторов со временем привела к тому, что появилась потребность работать с более интересными и эксклюзивными звуками. Конечно, подкладки, записанные на студийные магнитофоны, с применением хороших, качественных…

Настройка барабанов

У многих, даже опытных барабанщиков возникают проблемы с настройкой барабанов, и стыдного в этом ничего нет. (Пианисты же не стесняются того, что им приходится время от времени вызывать настройщика. Хотя тоже могли бы, вооружившись ключом, забраться в рояль или пианино. Прим. переводчика.) В Америке, например, существуют целые компании, специализирующиеся на…

Насколько хорошо они звучат? Обзор USB-микрофонов

Насколько хорошо они звучат? Скажем так, "весьма"Вне всякого сомнения, USB-микрофоны очень удобны. Процесс подключения сводится к протягиванию одного кабеля к компьютеру или iPad. Но все-таки что они из себя представляют? Действительно серьезные инструменты или просто удобные игрушки для тех, у кого не хватает денег на "настоящие" предусилители и конвертеры? Мне это…

Запись и обработка вокала

Я не открою секрет, если скажу, что под каждый голос нужно подбирать характерный для него микрофон. Именно на этом этапе закладывается понятие, именуемое "качеством". У каждого специалиста, работающего в сфере звукозаписи, есть свои догмы, которые могут быть определены и исходя из параметров аппаратуры, с помощью которой он осуществляет запись. Например, специалист,…

Запись ударных

Запись ударных дело дорогое и достаточно непростое. Прежде всего, необходимо добиться максимально хорошего звука от барабанов в акустическом варианте. Настроить, приглушить, снять ненужные резонансы, устранить скрип педалей и т. д. То, от чего наш слух привычно отстраивается, может неожиданно проявиться на записи, а надежды на то, что от ненужных звуков впоследствии…

Гитарист Fear Factory Дино Казарес: Line 6, или как получить тяжелый звук, путешествуя налегке

Гитарист Fear Factory Дино Казарес: Line 6, или как получить тяжелый звук, путешествуя налегкеС момента выхода в июне альбома The Industrialist влиятельная мире индастриал-метала группа Fear Factory побывала везде — от Сан Франциско до Швеции. Пока полным ходом идет подготовка к новому турне The World Industrialist Tour, гитарист группы Дино Казарес (Dino Cazares)…

Музыкальное оборудование для сочинения музыки на iPad

Когда музыканты впервые обратили внимание на iPad, они сразу же увидели его огромный потенциал как устройства для создания музыки. Универсальность сенсорного экрана быстро нашла применение в ряде приложений для синтезаторов, ударных, мультитрековой записи и в абсолютно новых сенсорных инструментах.Поскольку написание музыки на iPad все еще происходит в основном в…

Приборы динамической обработки

Динамические процессоры применяются практически во всех областях работы со звуком. На сегодняшний день алгоритмы динамической обработки можно четко разделить на цифровые и аналоговые. Цифровые алгоритмы представляют собой отдельный пласт, делимый в свою очередь по типу реализации - аппаратное и программное. Последние иногда ведут себя весьма оригинально, давая в руки…

Использование метронома

Метроном - это прибор, способный производить произвольное количество тактовых долей времени на слух. Служит как вспомогательный прибор для установления точного ритма в музыкальном произведении. Обычно метроном состоит из деревянного корпуса пирамидальной формы, одна из граней которого срезана; в этом срезе находится маятник с грузиком. Позиция грузика влияет на частоту…

Критические ошибки при выборе сценического павильона

В последнее время нередки ситуации, когда в погоне за экономией потребители, сами того не подозревая, отдают предпочтение товарам недобросовестных производителей. К сожалению, такая проблема все чаще наблюдается и на рынке фермовых конструкций. Хотя образцы одних и тех же изделий, представленные разными компаниями, похожи друг на друга как две капли воды, цены на…